
JR : Quality Random Data from the
Command line

Ugo Landini - Staff Solutions Engineer

Last updated: 28/06/23

Copyright 2020, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc. 2
https://gianlucanatali.github.io/streaming-games/index.html

https://gianlucanatali.github.io/streaming-games/index.html

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> whoami

apiVersion: confluent/v1
kind: senior solutions engineer
metadata:
 name: ugo landini
 nick: ugol
 email: ugo@confluent.io, ugo.landini@gmail.com
 namespace: confluent
 annotations: apache/committer, oss lover, distributed geek
 site: https://ugol.io
 labels:
 family: dad of two
 prev_companies: sun microsystems, vmware, red hat
 spec:
 replicas: 1
 containers:
 - image: github.com/ugol:latest

mailto:ugo@confluent.io
mailto:ugo.landini@gmail.com
https://ugol.io

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> apropos jr

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> apropos jr

● Json Random generator
● Just another Random generator
● Similar to JQ, which is one of the tools I use most

https://stedolan.github.io/jq/
● …

https://stedolan.github.io/jq/

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> apropos jr

● Json Random generator
● Just another Random generator
● Similar to JQ, which is one of the tools I use most

https://stedolan.github.io/jq/
● …

https://stedolan.github.io/jq/

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> history | grep jr

● Had to generate traffic for a customer, on the fly, with just an example of a
json

● They asked how much this stuff would be compressed by the producer,
which obviously varies with:
○ different algorithms
○ different throughput
○ different batching kafka configuration
○ can’t use a single json to do that, would be compressed too much

● Existing tools couldn’t easily answer this question, and for sure not in a 5
minutes time frame, for example:
○ Datagen with custom objects is complex to setup
○ Managed Datagen on Confluent Cloud can’t use custom objects and

can’t compress

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> history | grep jr

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> history | grep jr

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> whois jr

● Is a template system, leveraging wonderful Golang text/template
package

● Has a CLI but also REST APIs
● Can generate anything you could write a template for (so, not tied to json)
● Embeds a specialized fake library (no use of existing faking libraries)
● Has automatic integrity for related fields (city, zip, mobile, phone,

email/company, etc)
● Can maintain integrity between objects generated (relations)
● It’s been designed for Kafka, but can directly output to Elastic, Redis,

MongoDB, S3
● Can talk to Confluent Schema Registry for Kafka, serializing in Avro/Json

Schema

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> man jr
● You choose your template from the available templates
● You choose -n number of objects to generate at each pass
● You choose -f frequency
● You choose -d duration

jr template list
jr template run net_device | jq
jr template run -n 2 net_device | jq
jr template run -n 2 -f 100ms net_device | jq
jr template run -n 2 -f 100ms -d 5s net_device | jq

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> man template
● There are 3 different templates to control jr

○ Key template, which defaults to null
○ Output template, which defaults to Value only: {{.V/n}}
○ Value template, which you control in two different ways

■ Embedding directly in the command line (--embedded)
■ By name (user,net_device, etc) for the OOTB templates

jr template list
jr template show net_device
jr template show user
jr template run --key '{{key "ID" 100}}' user
jr template run --key '{{key "ID" 100}}' --outputTemplate '{{.K}} {{.V}}' net_device
jr template run --key '{{key "ID" 100}}' --embedded '{{name}} {{email}}' --kcat

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> cat cli

● You have 3 resources: emitters, templates and functions
○ You can list, show and run templates
○ You can list available functions and test directly (--run) without

writing a template. There are 127 functions at the moment, and
growing

○ Emitters are a new concept: you configure different emitters all
at once, with different frequency and other parameters, and then
you just list/show/run the emitters with a single command

jr function list -c finance
jr function list card --run
jr function list regex --run
jr emitter list
jr emitter run

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> man functions

● There are 127 functions at the moment, categorized as
○ People
○ Text utilities
○ Network
○ Context
○ Address
○ Finance
○ Math
○ Phone

cat .jr/templates/data/it/movie
jr template run --template '{{from "movie"}}'
jr template run --locale IT --template '{{from_n "beer" 3}}'
jr template run --locale IT --template '{{from_n "actor" 15}}'

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> cat automatic_integrity

● Some functions are “smart”, for example:
○ Mobile phones are generated by “inverse” regular expressions, using

mobile company numbers valid for the chosen country (--locale)
○ Streets, cities, zip codes, phone prefix and more are all localizable and

coherent without doing anything special
○ your work email is generated automatically using - if already in the

template - previously generated name, surname and company

jr template run --template '{{name}} {{email}}'
jr template run --template '{{name}} {{surname}} {{company}} {{email_work}}'
jr template run user | jq
jr --locale IT template run user | jq
jr --locale FR template run user | jq

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> echo “hello” 2>&1 >> $LOG

● You can choose different output for jr:
○ stdout (default)
○ kafka
○ redis
○ mongo
○ elastic
○ s3

● Each output needs a specific configuration
● Output can easily be extended implementing Producer interface

jr template run user -o kafka
jr template run user -o kafka -t topic_user -a
jr template run user -o mongo

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> select * from customers where custID='X1001';

● Relational Integrity is where most of similar tools fall. To generate “related”
data, they end up having long lists of prebuilt json documents, not at all
random. Basically they become equivalent to:
○ kcat -P -b localhost:9092 -t topic -K: -l prebuilt_json.txt

● jr has two features to help with integrity
○ preload to create a bunch of events at the beginning
○ context functions, especially add_v_to_list, random_n_v_from_list and

random_v_from_list

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> select * from customers where custID='X1001';

● With preload and context you can for example:
○ generate 1000 random products all at once to a topic
○ generate 100 random customers all at once and then add 1 customer

every minute
○ stream 5 random orders every 100ms by existing customers with

existing products
● To test your streaming apps (KStream, ksqlDB, Flink), you definitely need

relations!

jr function list -c context
jr template show shoe
jr template show shoe_customer
jr template show shoe_order
jr template show shoe_clickstream
jr emitter run

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> more | grep future

● We need your help!
○ Close issues if you can: https://github.com/ugol/jr/issues
○ Localizations in different languages
○ Useful new functions for templates
○ Useful pre-configured emitters for complex use cases
○ New output Producers (every k/v store is a candidate)

● Pls star, watch and fork the project on Github!
○ The brew guys told us that we need a minimum of:
○ 30 forks
○ 30 watchers
○ 75 stars
○ (if you want to brew install jr!)

https://github.com/ugol/jr/issues

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> more | grep links

● Links
○ Issues https://github.com/ugol/jr/issues
○ Documentation https://jrnd.io/
○ Blog first part:

https://dev.to/ugol/jr-quality-random-data-from-the-command
-line-part-i-5e90

○ Blog second part:
https://dev.to/ugol/jr-quality-random-data-from-the-command

-line-part-ii-3nb3
○ Blog third part: SOON

https://github.com/ugol/jr/issues
https://jrnd.io/
https://dev.to/ugol/jr-quality-random-data-from-the-command-line-part-i-5e90
https://dev.to/ugol/jr-quality-random-data-from-the-command-line-part-i-5e90
https://dev.to/ugol/jr-quality-random-data-from-the-command-line-part-ii-3nb3
https://dev.to/ugol/jr-quality-random-data-from-the-command-line-part-ii-3nb3

Copyright 2021, Confluent, Inc. All rights reserved. This document may not be reproduced in any manner without the express written permission of Confluent, Inc.

> more | grep questions?

